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Anisotropic stochastic magnetic fields lead to significant changes in the test particle transport as compared to isotropic 
cases. The analysis of the Langevin equations for the test particles, when considering both the magnetic anisotropy and the 
collisions, lead to anisotropic transport ranging from subdiffusion to diffusion. In absence of collisions, the transport is 
diffusive in all directions but with different diffusion coefficients. In the case of MHD produced fields, the transport in the 
plane perpendicular to the main magnetic field is strongly reduced, and appears to be almost diffusive while the parallel 
transport is still in the ballistic regime.  
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1. Introduction 
 
Fusion plasmas are never totally quiescent. Their 

dynamics rely on turbulence due to electromagnetic micro-
instabilities and on stochastic processes such as the 
magnetic perturbations of the confining magnetic surfaces. 
The edge localized mode (ELM), of the former instance, 
leads to high heat and particle fluxes to the plasma edge 
inducing strong erosion of plasma facing components (e.g. 
the divertor) [1]. It is therefore an absolute necessity to 
protect the plasma facing components of the fusion 
reactors (like ITER under construction in France) either by 
ergodization of the magnetic field, which is a method 
tested successfully in Tore Supra (Cadarache, France) and 
in Textor (Julich, Germany), or by seeding impurities as 
was done in Textor or in JET (Culham, UK). The latter 
method may lead to an enhanced confinement mode, the 
radiative improved mode (RI-mode), which is very 
beneficial to the bulk plasma behaviour [2]. However, this 
mode of operation often terminates by an impurity 
accumulation to the plasma centre. This effect is 
sometimes slowed down when the perturbed confining 
magnetic field periodically reconnects leading to plasma 
mixing and plasma temperature sawtoothing [3]. 
Cyclotron heating of the seeded impurity sometimes also 
leads to a reduction of the impurity accumulation [4]. 
These methods modify the impurity transport in a way that 
still needs to be understood. 

The impurity transport is often analysed using the 
drift kinetic equation (DKE) that provides us with the 
"neoclassical" transport coefficients [5] which take into 
account the in-homogeneities and curvatures of the strong 
confining magnetic field. These coefficients are bigger 
than their “classical” counterpart obtained for straight 
magnetic fields. Comparisons with experiments show that 

this neoclassical theory needs to be improved to account 
for the electrostatic turbulence and the magnetic 
stochasticity.  

We shall be concerned by the test particle transport in 
anisotropic stochastic magnetic fields. The field may be 
given analytically or be produced for example as in the 
case considered below by a three dimensional spectral 
MHD solver. Predictions on the test particle transport will 
be obtained from theoretical considerations as well as 
from numerical simulations. Our goal is to analyse the 
influence of the anisotropy of the stochastic magnetic field 
on the test particle transport.  

 
 
2. Test particle transport derived from  
     Langevin equations 
 
We consider a magnetic field 
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. The random fluctuating components jb  are 
given Gaussian stochastic processes characterized by two 
different spatial scales (parallel and perpendicular 
correlation length) zλ , yx λ=λ . 
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A test particle is singled out from the plasma. Its 

motion in the stochastic magnetic field, approximated by 
its guiding centre, is interrupted by the collisions with the 
particles of the background plasma. This effect is 
modelled by a random variation of the velocity field.   

The equations of motion for a test particle in the 
guiding centre approximation are the following Langevin 
equations: ( ) ( )t,z,y,xbtvdtxd z

rr
=  with )y,x(x ≡

r and 

( )tvdtdz z=  where, due to the collisions, the velocity 
( )tvz  is an independent zero-mean Gaussian stationary 

stochastic process for which we assumed the following 
autocorrelation: 
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1
zv2z1z ttexpv2tvtv −ν−= −  where vT is the 

thermal velocity and ν  is the collision frequency. In 
absence of collisions, zv  is constant (extreme sub-
diffusion) and normal diffusion is observed in the plane 
perpendicular to the main magnetic field component. A 
formal solution of the Langevin equations is  
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The particle dynamics in the perpendicular direction 

depends on the product of two fluctuating quantities, the 
magnetic field and the stochastic parallel velocity. This 
will lead, as shown below, to a non-diffusive transport. A 
substitution of the expression of the magnetic field into the 
Langevin equations gives 
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For example, the mean square displacement in the Ox 

direction then becomes 
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With the Fourier transform of )t,z(b

r
 expressed in the 

form ∫= )t,k(b)zikexp(dk)t,z(b zzz

rr
, the mean square 

displacement in the Ox direction becomes  
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correlations of the magnetic field. The function 
( )21,;kZ ττ  can be evaluated exactly [6]. The final result is  
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where ( ) ( ) ( )χφ−χ=χψ−=χφ χ− ;e1  and γ  is interpreted 
as the square of the ratio of the mean free path to the 
parallel correlation length of the magnetic field 
fluctuations. The motion in the perpendicular direction is 
characterized by a time dependent diffusion coefficient  
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Thus, while the dynamics along z , which is the 

direction of the source of magnetic anisotropy, is diffusive 
the transverse collisional motion is subdiffusive.  This is 
an example of "strange" anomalous behaviour [6]. In 
absence of collisions, the mean square displacement 
reduces to 22 t)t(x ∝δ  which is the ballistic short time 

behaviour, instead of the expected diffusive displacement 
in the stochastic magnetic field.   

 
3. The decorrelation trajectory method (DCT) 
 
This method, here adapted from [7] is expected to 

give the correct short time behaviour as well as to include 
effects due to correlated noises. To introduce the method, 
we consider the dominant order of the guiding centre 
motion and neglect the influence of the collisions. The 
problem then reduces to the equivalent problem of the 
magnetic field line transport. We consider the following 
magnetic field:  
 

( ) ( ) ( ) yyxxz0 ez,y,xbez,y,xbeBz,y,xB
rrrr

β+β+=  
 
where xb  and yb  have different correlation length in Ox  

and Oy  directions. This introduces the ratio yx / λλ=Λ  in 
the stochastic dimensionless magnetic field line equations 
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The Lagrangian correlation is the fundamental 
quantity needed to determine the asymptotic diffusion 



B. Weyssow, V. Remacle, B. Teaca, M. Negrea, I. Petrisor, C. Toniolo 
 

 

1940 

coefficient from the fluctuating ‘velocities’, i.e. 
( )[ ]z;zxwi
r

. The Lagrangian velocity autocorrelation is 
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where ...  is the ensemble average over the realizations of 
the fluctuating magnetic field and the tensor )(aij Λ  has 

the components ;1a xx =  

.a;aa 2
yyyxxy Λ=Λ== Assuming that the stochastic field 

is ‘stationary’ then ( ) ( )∫ χχ= z
0 ijij LdzD . The celebrated 

Corrsin approximation leads to both the quasilinear and 
the Bohm limits: 
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This introduces the probability distribution function 

( )( )zxx
rr

−δ . To set up the DCT method it is necessary to 
define a sub-ensemble S  of realizations of the stochastic 
components of the magnetic field as follows: At initial 
position 0x =  and initial “time” 0z =  the quantities 
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r
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r
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deterministic quantities. The global Lagrangian correlation 
is then represented as a sum over all sub-ensembles of the 
correlations ( )zLS
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where the probability density to get ( )00,b ψ

r
 at the initial 

position 0x =  and initial ‘time’  0z =  is 
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Since the initial fluctuating fields ( ) 0

ii b0;0b =
r

 in the 
sub-ensemble S  are deterministic we get 
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results, we first calculate the average Eulerian fields jb  in 

the sub-ensemble S  i.e. ( )( ) ( )( ) S
j

S
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rr
= . Then, 

a “deterministic trajectory” in each sub-ensemble 
satisfying the initial conditions ( ) 00xS =

r
 is obtained by 

solving the ordinary differential equations 
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correlation is calculated using the deterministic trajectories 
( )zxSr . 

With 1≠Λ  in Figure 1 the diffusion in x  differs 
from the diffusion in y  showing in this framework of the 
DCT the impact of an anisotropic magnetic spectrum [8]. 

 

 
 

Fig. 1. The radial and poloidal diffusion coefficients for 
1.0Km =  and 2.0=Λ . 

 
4. Test particle transport in MHD fields 
 
For a numeric simulation to be fully resolved (3-D 

spectral simulations) 1Lk Kmax
j ≥  where KL  is the 

Kolmogorov length, the smallest turbulent scale in the 
Kolmogorov theory of turbulence defined as 

( ) 4/13KL ευ=  with υ  the kinematic viscosity and ε  the 
total dissipation of energy. The time step is defined as 

( ) 1maxmax Ukdt
−

< . Classical fluids introduce the 

Reynolds number Re  by comparing the nonlinear term to 
the viscous diffusive term υ . MHD turbulence introduces 
the magnetic Reynolds number mRe  by comparing the 
nonlinear term to the magnetic diffusivity η . The ratio of 
the two dimensionless numbers gives the magnetic Prandtl 
number ηυ== /Re/RePr m . For the numerical work we 
consider 1Pr = . The anisotropy in the MHD produced 
spectrum can be measured in terms of the Shebalin angle 
θ  defined for a quantity Q  (a vector field or a scalar) as 

( ) ( )∑∑=θ ⊥
22
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z// kk =  is a privileged direction then 2
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we take the summation over all values of k . For isotropic 
spectrum 2)Q(tan2 =θ  or °=θ 74.54 . For a quasi-2D 
spectrum, with the energy in the modes perpendicular to 
the source of anisotropy, °=θ 90 , while for a slab type of 
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spectrum, with the energy in wave-vectors parallel to the 
anisotropy source, the angle tend towards °=θ 0 . Starting 
from isotropic conditions for the velocity and magnetic 
fields ( ) °=θ 4.55b,u

rr
, values ( ) °=θ 63b,u

rr
 for an imposed 

strong magnetic field in the z-direction 1B0 =  and 

( ) °=θ 68b,u
rr

 for 2B0 =  are easily achieved. From Ohm’s 
law in the MHD approximation we find that the electric 
field is given by jbue

rrrr
η+×−=  with bj

rr
×∇=  where j

v
 is 

the electric current, e
r

 the electric field expressed in 
appropriate units ( b

r
 is expressed in velocity units, the 

electric field e
r

 has the dimension of velocity squared). A 
test particle has a specific charge α  and is driven by the 
Lorentz force: vdtxd

rr
=  and ( )bvedtvd

rrrr
×+α=  where 

the parameter α  couples the time evolution of the field 
and of the test particle. For a value 1 (used here) the time 
scale of the test particle and the electromagnetic field is 
the same. The time unit used in the Figure 2 shown below 

is measured in gyro time units 
12/12
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From here on, the procedure is elementary, once the 
MHD fields are properly generated and statistical 
equilibrium is achieved, we solve, using a Runge-Kutta 
method, the equations of motion of 10.000 independent 
test particles. This large number is sufficient to obtain 
good statistics of the test particle transport. One of the 
results is shown in Figure 2. The anisotropy induced by an 
imposed strong magnetic field along the axis Oz leads, as 
expected, to a reduced transport in the perpendicular 
plane.   
 
 

 
Fig. 2. Mean square displacement in the isotropic case 
( 0B0 = ) and in the anisotropic case ( 2B0 = ) 
showing a strong reduction of the transport in the plane  
                perpendicular to the anisotropy. 
 
5. Conclusions 
 

We have shown, using three different approaches that 
the magnetic anisotropy may lead to significant change in 
the test particle transport. The analytical work on the 
Langevin equations, considering both the magnetic 
anisotropy and collisions, lead to subdiffusion and 
diffusion respectively. In absence of collisions, as the 
DCT method shows, the transport is diffusive in all 
directions but with different diffusion coefficients. In the 
case of MHD produced fields, the transport in the plane 
perpendicular to the main magnetic field is strongly 
reduced, and appears to be almost diffusive while the 
parallel transport is still in the ballistic phase.  
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