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Anomalous test particle transport in turbulent MHD

fields
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Anisotropic stochastic magnetic fields lead to significant changes in the test particle transport as compared to isotropic
cases. The analysis of the Langevin equations for the test particles, when considering both the magnetic anisotropy and the
collisions, lead to anisotropic transport ranging from subdiffusion to diffusion. In absence of collisions, the transport is
diffusive in all directions but with different diffusion coefficients. In the case of MHD produced fields, the transport in the
plane perpendicular to the main magnetic field is strongly reduced, and appears to be almost diffusive while the parallel

transport is still in the ballistic regime.
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1. Introduction

Fusion plasmas are never totally quiescent. Their
dynamics rely on turbulence due to electromagnetic micro-
instabilities and on stochastic processes such as the
magnetic perturbations of the confining magnetic surfaces.
The edge localized mode (ELM), of the former instance,
leads to high heat and particle fluxes to the plasma edge
inducing strong erosion of plasma facing components (e.g.
the divertor) [1]. It is therefore an absolute necessity to
protect the plasma facing components of the fusion
reactors (like ITER under construction in France) either by
ergodization of the magnetic field, which is a method
tested successfully in Tore Supra (Cadarache, France) and
in Textor (Julich, Germany), or by seeding impurities as
was done in Textor or in JET (Culham, UK). The latter
method may lead to an enhanced confinement mode, the
radiative improved mode (RI-mode), which is very
beneficial to the bulk plasma behaviour [2]. However, this
mode of operation often terminates by an impurity
accumulation to the plasma centre. This effect is
sometimes slowed down when the perturbed confining
magnetic field periodically reconnects leading to plasma
mixing and plasma temperature sawtoothing [3].
Cyclotron heating of the seeded impurity sometimes also
leads to a reduction of the impurity accumulation [4].
These methods modify the impurity transport in a way that
still needs to be understood.

The impurity transport is often analysed using the
drift kinetic equation (DKE) that provides us with the
"neoclassical” transport coefficients [5] which take into
account the in-homogeneities and curvatures of the strong
confining magnetic field. These coefficients are bigger
than their “classical” counterpart obtained for straight
magnetic fields. Comparisons with experiments show that

this neoclassical theory needs to be improved to account
for the electrostatic turbulence and the magnetic
stochasticity.

We shall be concerned by the test particle transport in
anisotropic stochastic magnetic fields. The field may be
given analytically or be produced for example as in the
case considered below by a three dimensional spectral
MHD solver. Predictions on the test particle transport will
be obtained from theoretical considerations as well as
from numerical simulations. Our goal is to analyse the
influence of the anisotropy of the stochastic magnetic field
on the test particle transport.

2. Test particle transport derived from
Langevin equations

We consider a magnetic field

é:éo(éer,Bij(x,y,z,t)éjj with
i
I=(xy,2),

V-b=0. The random fluctuating components b; are

B<<1 and satisfying the constraint

given Gaussian stochastic processes characterized by two
different spatial scales (parallel and perpendicular
correlation length) %,, A, =4, .

Obviously,

B = Byy(1-+Bb, )2 +B?b2 + b = By(1+pb, )+ 0(p? )

thus
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_B/B~ (L+Pb, e, +BbyEy +Pby&,

(L+pb,)

A test particle is singled out from the plasma. Its
motion in the stochastic magnetic field, approximated by
its guiding centre, is interrupted by the collisions with the
particles of the background plasma. This effect is
modelled by a random variation of the velocity field.

The equations of motion for a test particle in the
guiding centre approximation are the following Langevin

equations: dx/dt = v, (t)b(x,y,z,t) with X =(x,y)and
dz/dt = v, (t) where, due to the collisions, the velocity
v, (t) is an independent zero-mean Gaussian stationary

stochastic process for which we assumed the following
autocorrelation:

<vz(t1)vz(t2)>vZ —27'vZexp(—vit, —t,|) where vy is the

thermal velocity andv is the collision frequency. In
absence of collisions, v, is constant (extreme sub-

diffusion) and normal diffusion is observed in the plane
perpendicular to the main magnetic field component. A
formal solution of the Langevin equations is

% (t)=%Xo +Badtv, (t)b(x(t), y(t),z(t),t')

2(t) =2z, + [ydt'v, (t')

The particle dynamics in the perpendicular direction
depends on the product of two fluctuating quantities, the
magnetic field and the stochastic parallel velocity. This
will lead, as shown below, to a non-diffusive transport. A

substitution of the expression of the magnetic field into the
Langevin equations gives

SX(t) =Bfydt'v, (t')Bl(x0 +O(B), Z + adt"v, ("), t').

For example, the mean square displacement in the Ox
direction then becomes

<6x2(t)> -
= B2JLdt, Lt (v, (t)by (X0, Z(t))V, (6)by (X1 2(t5)))

With the Fourier transform of B(Z,t) expressed in the
form b(z,t) = jdkzexp(ikzz)B(kz,t) , the mean square
displacement in the Ox direction becomes

(32 (1)) = 2% [ ief dk, (t - 1)BlKk, )2(k ., 7)

where

z(k;rl,rz):<eiszf”Vz(9>devz(t+r)vz(t)> and
\Y

z

1
Bzexp(—E/li kz) . Both depend on the prescribed

correlations of the magnetic field. The function
Z(k; y,7,) can be evaluated exactly [6]. The final result is

1 My 6°()
[l+y\|/(vt) 12 2[t+yw(vt)]

(3x°(1)) =

whereq)(x):l—e_‘x‘; y(x)=7-0(x) and v is interpreted
as the square of the ratio of the mean free path to the
parallel correlation length of the magnetic field
fluctuations. The motion in the perpendicular direction is
characterized by a time dependent diffusion coefficient

Dl(t):%8t<8x2(t)> =%.

Thus, while the dynamics along z, which is the
direction of the source of magnetic anisotropy, is diffusive
the transverse collisional motion is subdiffusive. This is
an example of "strange" anomalous behaviour [6]. In
absence of collisions, the mean square displacement

reduces to <6x2(t)> o« t? which is the ballistic short time

behaviour, instead of the expected diffusive displacement
in the stochastic magnetic field.

3. The decorrelation trajectory method (DCT)

This method, here adapted from [7] is expected to
give the correct short time behaviour as well as to include
effects due to correlated noises. To introduce the method,
we consider the dominant order of the guiding centre
motion and neglect the influence of the collisions. The
problem then reduces to the equivalent problem of the
magnetic field line transport. We consider the following
magnetic field:

B(x,y,2) = Bo&, +Bb, (x,y, 26, +Bby (x,y, )6,

where b, and b, have different correlation length in Ox
and Oy directions. This introduces the ratio A =, /A, in
the stochastic dimensionless magnetic field line equations

3_;‘ = Kby (x,y,2)=w,[X(z):2]
3_32’ = AKpby (x,y,2)=w, [X(z) ]

The Lagrangian correlation is the fundamental
quantity needed to determine the asymptotic diffusion
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coefficient from the fluctuating ‘velocities’, i.e.
w;[X(z);z]. The Lagrangian velocity autocorrelation is

Ljj (2)= <Wi [%(0).0] W [%(z), Z]> =

=a;(MK5 (b;[%(0)0] b;[x(2).2])

Where<...> is the ensemble average over the realizations of
the fluctuating magnetic field and the tensor a;(A) has
the components ay =1

Ay =y =Ajay, = A?. Assuming that the stochastic field
is ‘stationary’ then Dj(z)=[jdyL;(x). The celebrated

Corrsin approximation leads to both the quasilinear and
the Bohm limits:

Lij(z)=a;(A)K5] di<bi [x(0)0] bj[i(z); z]8(% - X(Z)»
~ a(A)KR T dx(b;[%(0)0] bj[x(2): 2])(8(x ~ X(2))

This introduces the probability distribution function
(8(x —x(2))). To set up the DCT method it is necessary to

define a sub-ensemble S of realizations of the stochastic
components of the magnetic field as follows: At initial
position x=0 and initial “time” z=0 the quantities

\u(é;o):\u‘), bi(f);o): b? for i=(x,y) are given
deterministic quantities. The global Lagrangian correlation
is then represented as a sum over all sub-ensembles of the

correlations L3(z):
Lij(z):
—a (KA [ dy®] dblf dbdP(B°,y°)blb?[x(2) 2]

where the probability density to get (Bo,wo) at the initial
position x =0 and initial ‘time’ z=0 is

Pl6° w°)=Pb3) Plog el )=

=(2n)¥ ZA_lexp[—%((wo)z (A 102 - (atn )Zﬂ .

Since the initial fluctuating fields bi(ﬁ;o): b? in the
sub-ensemble S are  deterministic  we  get
<bi(6,0)bj[7<(z); z]>5:b?<bj[>?(z);z]>s. To obtain explicit

results, we first calculate the average Eulerian fields bj in

the sub-ensemble S i.e. b?()‘((z);z)=<bj(>“<(z);z)>s. Then,
a ‘“deterministic trajectory” in each sub-ensemble
satisfying the initial conditions X°(0)=0 is obtained by
solving the ordinary differential equations

S S
ddizszbi; ddLZ:AKmbf,. The

correlation is calculated using the deterministic trajectories
%>(z).

With A =1 in Figure 1 the diffusion in x differs
from the diffusion in y showing in this framework of the

DCT the impact of an anisotropic magnetic spectrum [8].

Lagrangian

¥y
o
n

Fig. 1. The radial and poloidal diffusion coefficients for
Kn=021and A=02.

4. Test particle transport in MHD fields

For a numeric simulation to be fully resolved (3-D
spectral simulations) k™ L >1 where L is the
Kolmogorov length, the smallest turbulent scale in the
Kolmogorov  theory of turbulence defined as
L :(038)1/4 with v the kinematic viscosity and & the
total dissipation of energy. The time step is defined as

—1
dt<(kmaxumax|) . Classical fluids introduce the

Reynolds number Re by comparing the nonlinear term to
the viscous diffusive term v. MHD turbulence introduces
the magnetic Reynolds number Re, by comparing the
nonlinear term to the magnetic diffusivity n. The ratio of

the two dimensionless numbers gives the magnetic Prandtl
number Pr=Re,/Re=v/n. For the numerical work we

consider Pr=1. The anisotropy in the MHD produced
spectrum can be measured in terms of the Shebalin angle
0 defined for a quantity Q (a vector field or a scalar) as

tan? 0(Q) = £ k2 Q(k, tf* /T kF[Q(k, 1)?
ky =k, is a privileged direction then k% =k +k3 and

where if

we take the summation over all values of k. For isotropic
spectrum tan®0(Q)=2 or ©=54.74". For a quasi-2D
spectrum, with the energy in the modes perpendicular to
the source of anisotropy, 6=90", while for a slab type of
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spectrum, with the energy in wave-vectors parallel to the
anisotropy source, the angle tend towards 6 =0’ . Starting
from isotropic conditions for the velocity and magnetic
fields G(D,B):55.4°, values e(ﬁ,E): 63" for an imposed
strong magnetic field in the z-direction B,=1 and

G(U,B): 68" for B, =2 are easily achieved. From Ohm’s
law in the MHD approximation we find that the electric
field is given by € =—lixb+mnj with j =Vxb where j is
the electric current, € the electric field expressed in
appropriate units (b is expressed in velocity units, the

electric field € has the dimension of velocity squared). A
test particle has a specific chargea and is driven by the
Lorentz force: d/dt=V and dV/dt=a(é+Vx5) where
the parameter o couples the time evolution of the field
and of the test particle. For a value 1 (used here) the time

scale of the test particle and the electromagnetic field is
the same. The time unit used in the Figure 2 shown below

. . ) . A2)t
is measured in gyro time units t, =2mx (x<b > .

From here on, the procedure is elementary, once the
MHD fields are properly generated and statistical
equilibrium is achieved, we solve, using a Runge-Kutta
method, the equations of motion of 10.000 independent
test particles. This large number is sufficient to obtain
good statistics of the test particle transport. One of the
results is shown in Figure 2. The anisotropy induced by an
imposed strong magnetic field along the axis Oz leads, as
expected, to a reduced transport in the perpendicular
plane.

B0 =1 isotropic

B0 = 2 anisotropic

2 2

0.01 o

<[r {t}-<r {t)>]

1E-3

We have shown, using three different approaches that
the magnetic anisotropy may lead to significant change in
the test particle transport. The analytical work on the
Langevin equations, considering both the magnetic
anisotropy and collisions, lead to subdiffusion and
diffusion respectively. In absence of collisions, as the
DCT method shows, the transport is diffusive in all
directions but with different diffusion coefficients. In the
case of MHD produced fields, the transport in the plane
perpendicular to the main magnetic field is strongly
reduced, and appears to be almost diffusive while the
parallel transport is still in the ballistic phase.
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